Mutations in SARS-CoV-2 offer insights into virus evolution.

By analysing virus genomes from over 7,500 people infected with Covid-19, a UCL-led research team has characterised patterns of diversity of SARS-CoV-2 virus genome, offering clues to direct drugs and vaccine targets.

The study, led by the UCL Genetics Institute, identified close to 200 recurrent genetic mutations in the virus, highlighting how it may be adapting and evolving to its human hosts.

Researchers found that a large proportion of the global genetic diversity of SARS-CoV-2 is found in all hardest-hit countries, suggesting extensive global transmission from early on in the epidemic and the absence of single 'Patient Zeroes' in most countries.

The findings, published today in Infection, Genetics and Evolution, also further establish the virus only emerged recently in late 2019, before quickly spreading across the globe. Scientists analysed the emergence of genomic diversity in SARS-CoV-2, the new coronavirus causing Covid-19, by screening the genomes of over 7,500 viruses from infected patients around the globe. They identified 198 mutations that appear to have independently occurred more than once, which may hold clues to how the virus is adapting.

Co-lead author Professor Francois Balloux (UCL Genetics Institute) said: "All viruses naturally mutate. Mutations in themselves are not a bad thing and there is nothing to suggest SARS-CoV-2 is mutating faster or slower than expected. So far we cannot say whether SARS-CoV-2 is becoming more or less lethal and contagious."


The small genetic changes, or mutations, identified were not evenly distributed across the virus genome. As some parts of the genome had very few mutations, the researchers say those invariant parts of the virus could be better targets for drug and vaccine development.

Comments