Genome-wide pattern found in glioblastoma tumors predicts patients' life expectancy.

For the past 70 years, the best indicator of life expectancy for a patient with glioblastoma (GBM) -- the most common and the most aggressive brain cancer -- has simply been age at diagnosis.

Now, an international team of scientists has experimentally validated a predictor that is not only more accurate but also more clinically relevant: a pattern of co-occurring changes in DNA abundance levels, or copy numbers, at hundreds of thousands of sites across the whole tumor genome.

Patients with the genome-wide pattern survive for a median of one year. However, patients without it survive three times as long, for a median of three years. The results came from a retrospective clinical trial that was published today in the journal Applied Physics Letters (APL) Bioengineering.

Having a predictor of a patient's life expectancy can help inform medical decisions. The GBM pattern can, in principle, be used in this way today. For example, when a patient has magnetic resonance imaging results that are inconclusive such information can help doctors decide whether to perform an intervention.

"The information contained in this pattern, and other patterns that we can discover by using the same mathematical methods, can improve the standard of care of GBM and other diseases," said the team leader Orly Alter, Ph.D., Utah Science, Technology, and Research (USTAR) associate professor of bioengineering and human genetics at the Scientific Computing and Imaging Institute and the Huntsman Cancer Institute at the University of Utah.

Comments